skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang_杨, Wuming 伍明"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The origin of very metal-poor (VMP; [Fe/H] ≤ −2.0) stars on planar orbits has been the subject of great attention since their first discovery. However, prior to the release of the Gaia BP/RP (XP) spectra and large photometric samples such as SkyMapper, SAGES, J-PLUS, and S-PLUS, most studies have been limited due to their small sample sizes or strong selection effects. Here, we crossmatch photometric metallicities derived from Gaia XP synthetic photometry and geometric distances from Bailer-Jones et al., and select 12,000 VMP stars (1604 dwarfs and 10,396 giants) with available high-quality astrometry. After calculating dynamical parameter estimates usingAGAMA, we employ the nonnegative matrix factorization technique to thevϕdistribution across bins in Z max (the maximum height above or below the Galactic plane during the stellar orbit). We find three primary populations of the selected VMP stars: halo, disk system, and the Gaia Sausage/Enceladus structure. The fraction of disk-like stars decreases with increasing Z max (as expected), although it is still ∼20% for stars with Z max ∼ 3 kpc. Similar results emerge from the application of the Hayden criterion, which separates stellar populations on the basis of their orbital inclination angles relative to the Galactic plane. We argue that such high fractions of disk-like stars indicate that they are an independent component, rather than originating solely from Galactic building blocks or heating by minor mergers. We suggest that most of these VMP stars are members of the hypothesized “primordial” disk. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026